Concrete Technology
for Concrete Pumps
Contents

Preliminary comments ... 5

1 Concrete Components – Base materials and their influences 9
 1.1 Cement .. 9
 1.2 Addition of water ... 12
 1.3 Aggregates .. 12
 1.4 Concrete admixtures ... 16
 1.5 Concrete additives ... 17
 1.6 Concrete composition – mix calculation 20

2 Properties of freshly-mixed concrete (general) 24
 2.1 Bulk density ... 24
 2.2 Workability .. 25

3 Properties of hardened concrete ... 32
 3.1 Exposition classes ... 32
 3.2 Compressive strength ... 35
 3.3 Corrosion protection .. 36
 3.4 Other properties of hardened concrete 37

4 Properties and conditions of freshly-mixed concrete when pumping ... 38
 4.1 Pumpability and willingness to pump 38
 4.2 Origination and properties of the "boundary zone layer" 40
 4.3 The behaviour of freshly-mixed concrete in the concrete pump .. 45
 4.4 The behaviour of freshly-mixed concrete in the delivery line 52
FloncreteD is an artificial stone which is made from a mixture of cement, aggregates and water – and if necessary also with concrete admixtures and concrete additions (concrete additives) – by the hardening of the cement paste (cement-water mixture). A highly diverse range of concrete properties can be achieved depending on the composition selected. Before hardening, the freshly-mixed concrete is more or less "fluid" and can be made into almost any shape, and when it has hardened as an artificial stone it retains this shape.

The wide range of possible compositions and applications of concrete as a construction material have resulted in a variety of different distinctions and categories:

- In terms of reinforcement, a differentiation is made between:
 - Reinforced concrete:
 - conventionally reinforced concrete
 - pre-stressed concrete
 - Non-reinforced concrete
 - Fibre-reinforced concrete

- In terms of dry density, a differentiation is made between:
 - Lightweight concrete lighter than 2.0 t/m³, but not lighter than 0.8 t/m³
 - Normal concrete heavier than 2.0 t/m³, but not heavier than 2.6 t/m³
 - High density concrete heavier than 2.6 t/m³

- In terms of the hardening state, a differentiation is made for:
 - Fresh concrete as long as it can still be processed
 - according to its consistency, fresh concrete is subdivided into
 - stiff (F1), plastic (F2), soft (F3), very soft (F4), free-flowing (F5) and very free-flowing (F6)
In terms of the manufacturing and monitoring requirements, the following subdivisions are made

<table>
<thead>
<tr>
<th>Object</th>
<th>Monitoring class 1</th>
<th>Monitoring class 2</th>
<th>Monitoring class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property class for normal and High density concrete in accordance with DIN EN 206-1 and DIN 1045-2</td>
<td>≤ C25/30</td>
<td>≥ C30/37 and ≤ C50/60</td>
<td>≥ C55/67</td>
</tr>
<tr>
<td>Property class for lightweight concrete in acc. with DIN 1045-2 and EN 206-1 of raw density classes D1.0 to D1.4 D1.6 to D2.0</td>
<td>cannot be used ≤ LC25/28</td>
<td>≤ LC25/28 LC30/35 and LC35/38</td>
<td>≥ LC30/33 ≥ LC40/44</td>
</tr>
<tr>
<td>Exposition class acc. to DIN 1045-2</td>
<td>X0, XC, CF1</td>
<td>XS, XD, XA, XM, XF2, XF3, XF4</td>
<td>–</td>
</tr>
<tr>
<td>Special properties of concrete</td>
<td>Concrete for watertight buildings (e.g. water-impermeable basements) Underwater concrete Concrete for high working temperatures ≤ 250 °C Radiation protection concrete (apart from nuclear power plant construction) For certain applications (e.g. delayed concrete, concrete construction when handling materials hazardous to water), the relevant DAfStb guidelines must be applied.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concrete technology comprises all tasks which especially serve the purpose of guaranteeing the desired construction material properties of concrete with the base materials available. After determining the mix contents, this mainly concerns all freshly-mixed concrete processes from mixing, to transport, placing and compaction, through to any required after-treatment of the green concrete. At the same time, concrete technology is responsible for purposefully influencing the properties of the freshly-mixed concrete for the planned placing stages in a serviceable way, but if possible without any negative impact on the later properties of the hardened concrete.
Nowadays, the pumping of freshly-mixed concrete is a link in the process chain that one can scarcely imagine living without. With the current state of concrete technology, pumpable concrete is no longer classed as a special concrete, instead it is a construction material regulated by the concrete standard DIN EN 206-1 / DIN 1045-2 with a specified composition as required with reinforced concrete for reinforced components (from C16/20, consistency F3).

However, every good pump operator should have a basic knowledge of concrete technology. Pump operators should know which technical pumping consequences are a result of the different properties of the material, while also recognising the potential consequences for the construction material if the fresh concrete is handled incorrectly when pumping. This present document "Concrete Technology For Pumping" aims to fulfill this purpose. Further information can be found in the "Technical Regulations" (for a list – see section 6) as well as in more specialised literature (for a list, refer to section 7).

1. Concrete components
 Base materials and their influences

1.1 Cement

Cement is usually a grey powder which is fabricated by burning and grinding certain rock with lime and clay content. During hardening, a mixture of cement and water, known as the cement paste, firmly combines (binds) the individual aggregates to each other to form artificial stone.

Cement used for general purposes is subdivided into 5 main categories:

- CEM I Portland cement
- CEM II Portland composite cement (main components in addition to PC clinker: granulated cinder, powdered limestone, burnt shale, fly ash, etc.)
- CEM III Blast furnace cement
- CEM IV Pozzolanic cement
- CEM V Composite cement

The different cements are available in different quality levels, classified according to property classes. For example:

- CEM I 32.5 R (Portland cement with property class 32.5 N/mm² and quicker – rapid hardening)
- CEM II/B-T 42.5 N (Portland shale cement with property class 42.5 N/mm² and normal hardening)

Depending on the chemical composition and fineness of grinding, the cements all develop their hardness at different rates. Portland cements are usually among the cements with higher early strength. Blast furnace cements can considerably improve chemical resistance. The standard norms for cement are as follows:

- In Germany, DIN EN 197-1
- Various country-specific standards
Concrete components

The numerical data of the property classes usually refer to the minimum strength attained by test specimens after 28 days at a certain w/c ratio, measured in the respective country-specific unit (e.g. in Germany: N/mm², in Austria: kp/cm²). The strength development is by no means complete after 28 days, however, this value usually forms the basis for the strength calculation and the granting of permission to use the building.

The setting of the cement (hydration) is a very complicated process where water is bound chemically and physically. When mixing cement and water a cement paste results and here the cement immediately starts to form new microscopic crystal bonds with the water. These fine crystals mat together more and more densely, and this first results in the setting and then the hardening of the cement paste to form cement stone. This has the following special properties:
- It remains solid and volumetrically stable both in air and under water
- The steel components in the concrete (e.g. reinforcement) are protected against corrosion
- When temperatures increase, it expands to the same extent as steel

This fulfils essential prerequisites for the durability of reinforced concrete.

The cement must only be allowed to set at the earliest 90 minutes after the mixture is created. The concrete must therefore be placed within this time period.

For complete hydration, approximately 40% of the cement mass must be water. 25% is chemically bound, while the rest remains in the gel pores as steam, i.e. physically bound. For a water-cement ratio below 0.40, the cement grain cannot hydrate completely even with constant water immersion; whereas for a w/c ratio of over 0.40, even after complete hydration, very fine capillary pores are formed which at first remain full of water, which later evaporates. Fig. 2 illustrates these conditions. The diameter of these capillary pores is approximately 1000 times larger than that of the gel pores.

To fabricate a placeable concrete usually more than just 40% of the cement mass is required as water. The amount of water required is stipulated in the mixture breakdown.

Caution!

Any unauthorised addition of water on the construction site will lead to drastic quality losses.

With pumping concrete, this significantly impairs hardness (up to 30%) and hence also the density and durability of the concrete.*

*refer to section 1.5 und 3
1.2 Addition of water

Suitable water is mixing water in accordance with DIN EN 1008. This standard includes guidelines for limiting the content of harmful substances that have a corrosive action or may impair hardening. In general, drinking water is always suitable as mixing water.

Caution!
The mix of water and cement is greatly alkaline and has a caustic effect on skin and mucous membranes. Always wear appropriate gloves, protective goggles and sturdy shoes. In case of accidental direct contact, rinse immediately with plenty of clean water.

1.3 Aggregates

Aggregates are usually natural rock from gravel pits, rivers (gravel and sand) or quarries (chippings) and they give the concrete certain properties. The quality requirements that are to be monitored are stipulated in the respective standards:

- In Germany, DIN EN 12620
- Various country-specific standards

Along with the designation of the aggregate and the usual grain groups, these standards also contain the requirements regarding:

- Aggregate composition
- Aggregate shape
- Resistance to shattering
- Resistance to burnishing and abrasion
- Alkali-silicic acid reactivity
- Resistance to wear
- Resistance to frost and thawing agent

- Content of substances of organic origin
- Sulphate content
- Compressive strength
- Content of expandable components
- Content of water-soluble chloride

Concrete aggregates are divided into aggregate classes according to particle size. The minimum and maximum particle sizes for each class are specified, e.g. 0/2; 0/4; 2/8; 8/16;

16/32. The aggregate of a type of concrete usually consists of a mix of fine, medium and coarse grain. This composition may be naturally present in a quarrying site. Usually, however, the natural grain mix or the mix that results when rocks are broken is classified immediately on site, i.e. it is separated by large sifting plants according to grain size and then delivered to concrete mixing plants and stored in separate boxes.

When preparing the concrete in the mixer, the portions of the different aggregate sizes are mixed in the composition required. The composition of a grain mix is measured by screening and represented graphically as a grading curve. To do this, a previously measured sample is separated into individual grain size groups in a laboratory by a set of stacked, vibrating screens made up of the prescribed mesh or square hole screens. Fig. 3 illustrates this process. The top screen has the largest mesh width and the lowest screen the smallest. At the very bottom the base is solid to retain the finest components. The sample to be examined is evenly distributed onto this vibrating set of screens. The individual grains drop downwards from screen to screen until the mesh or hole width is too small for the respective particle size.

Fig. 3: Sieve analysis and grading curve
Concrete components

The distribution of coarse and fine aggregates in the grain mix influences the specific surface to be wetted, and hence directly affects the requirement for cement paste. The quantities of water and cement paste required for an aggregate mixture also depend on the shape of the granules. Fig. 4 illustrates this with the example of a cube representing a "compact" grain and a plate with the same volume representing a "flat" grain which has a surface 2/3 times greater than that of the "compact" grain. For "broken" grain, this difference is even greater, whereas the surface area of a "round grain" (sphere) with the same volume is 1/5 smaller than that of the cube. In addition, the shape of the grain also directly influences the workability of the concrete. Concrete with round, compact and smooth grain "flows" better and can also be compacted better than concrete with long, plate-like or easily broken aggregates with a rough surface.

Usually the maximum particle size of the aggregate for concrete is restricted to a diameter of 32 mm. For components with a particularly large mass, this value can be raised to 63 mm (the concrete can then only be pumped using special equipment). The maximum particle size for finely structured and densely reinforced components is restricted to a diameter of 16 mm or even 8 mm.

![Compacted grain](image1)

![Plate-like grain](image2)

Fig 4: Different geometries result in different surface areas for the same volume

![Multiple broken grain](image3)

![Plate-like grain](image4)

Fig. 5: Influence of the shape of the grain on the surface with the same volume
1.4 Concrete admixtures

Admixtures influence the properties of fresh or hardened concrete. In Germany, concrete admixtures must either correspond to a standard, possess a test mark from the Deutsches Institut für Bautechnik (German Institute of Construction Technology), or have a CE conformity declaration. Admixtures are usually powdered substances that are added to the concrete. They mainly work physically and usually serve as an aid for better workability, less water repellence (bleeding), higher structural imperviousness or as coloration.

Admixtures are classified into type I and type II.
Type I admixtures are inert, non-reactive substances that mainly improve workability through a "filler" effect. E.g.: powdered rock, colour pigments.
Type II admixtures are reactive substances that improve hardness which, in addition to improving workability, also cause changes in physical properties. E.g.: Coal fly ash, micro-silica.

![Fig. 6: Fly ash in an electron microscope grid (SAFAMENT*)](image)

1.5 Concrete additives

Concrete additives are usually liquid and are only added in very small amounts whilst mixing the concrete. They have a physico-chemical action and are classified into so-called efficiency groups depending on their effect in freshly-mixed or hardened concrete:

- **Concrete deflocculants (BV)**
 These concrete additives depressurise the water, improving workability while at the same time reducing or maintaining the prescribed water-cement ratio.

- **Plasticising admixtures (FM)**
 These concrete additives are advanced deflocculants. They have a particularly strong deflocculant action and enable efficient concrete installation with very soft to liquid consistencies. Plasticising admixtures are usually treated as deflocculants and are added in the transport concrete mixer. Plasticising admixtures based on polycarboxylate ether usually have a high consistency and no longer need to be added at the construction site.

![Fig. 7: Concrete before and after addition of plasticising admixture](image)

Source: SAFA Baden-Baden
Air-entraining agents (LP)
Concrete with high resistance to frost and thawing salt must have a minimum content of micro air voids (smaller than 0.3 mm) which can be obtained by adding air entraining agents. Ice has a larger volume than water. If the expansion of the frozen water is prevented in the concrete then the concrete may burst. The additional air voids offer the necessary space for this extension.

Water resisting admixtures (DM)
These are used to improve the water imperviousness of the concrete. Water resisting admixtures are designed in particular to protect the structure from penetrating substances that may be harmful to water.

Setting retarders (VZ)
These delay the setting time of the concrete, which may be required for several reasons, e.g. hot weather or jointless components with a large mass (e.g. bridge superstructures, strong base plates, concrete for kerb stones). Over-metering can, however, have the opposite effect and turn the setting retarder into a setting accelerator agent!

Setting accelerators (BE)
These chemically accelerate the setting of, for example, shotcrete or sealing mortar up to just a few seconds after spraying or placing. An alternative, without the disadvantage of considerable reduction of the 28 day- and final strength is physically-active micro silica dust.

Caution!
It is not advisable to add admixtures and additions on the construction site, since the concrete purchaser loses all claims to a guarantee.
1.6 Concrete composition – mix calculation

The composition of fresh concrete is specified by defined limits in the standards DIN EN 206-1/ DIN 1045-2. Depending on the environment, concrete is divided into exposition classes*, which refer to the corrosion of concrete and reinforcements.

<table>
<thead>
<tr>
<th>No.</th>
<th>Exposition class</th>
<th>Reinforcement corrosion</th>
<th>Corrosion caused by chloride</th>
<th>Chloride except from sea water</th>
<th>Chloride from sea water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max. permitted W/Z</td>
<td>X0</td>
<td>XC1</td>
<td>XC2</td>
<td>XC3</td>
</tr>
<tr>
<td>2</td>
<td>Min. compressive strength class</td>
<td>CB/10</td>
<td>C16/20</td>
<td>C20/25</td>
<td>C25/30</td>
</tr>
<tr>
<td>3</td>
<td>Min. cement content in kg/m³</td>
<td>–</td>
<td>240</td>
<td>260</td>
<td>280</td>
</tr>
<tr>
<td>4</td>
<td>Min. cement content allowing for additions in kg/m³</td>
<td>–</td>
<td>240</td>
<td>240</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>Min. air content in %</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Other requirements</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* Only for concrete with no reinforcement or embedded metal.
* Does not apply for lightweight concrete.
* With a maximum aggregate particle size of 63 mm, the cement content can be reduced by 30 kg/m³.
* If using air-entrained concrete, e.g. due to simultaneous requirements from exposition class X; one property class lower.
* For slowly or very slowly hardening concrete (r < 0.30), one property class lower. The compressive strength for classification into the required compressive strength class should also be determined in this case using 28-day old samples.

Limits for the composition and properties of concrete – reinforcement corrosion

Concrete corrosion

<table>
<thead>
<tr>
<th>No.</th>
<th>Exposition class</th>
<th>Attacked by frost</th>
<th>Aggressive chemical environment</th>
<th>Exposure to wear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max. permitted W/Z</td>
<td>0.60</td>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>Min. compressive strength class</td>
<td>C25/30</td>
<td>C30/35</td>
<td>C35/45</td>
</tr>
<tr>
<td>3</td>
<td>Min. cement content in kg/m³</td>
<td>280</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>4</td>
<td>Min. cement content allowing for addition of admixtures in kg/m³</td>
<td>270</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>5</td>
<td>Min. Air content in %</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>Other Requirements</td>
<td>F₁</td>
<td>MS₁₀</td>
<td>F₂</td>
</tr>
</tbody>
</table>

* See footnotes to the table on page 20.
* The average air content in fresh concrete immediately before placing must be as follows: with a maximum aggregate particle size of 8 mm ± 5.5 % (volume share), 16 mm ± 4.5 % (volume share), 32 mm ± 4.0 % (volume share) and 63 mm ± 3.5 % (volume share). Individual values are permitted to fall no more than 0.5 % (volume share) below these requirements.
* Type II admixtures may be added, but must not be included in the cement content or the W/C.
* Only aggregates according to DIN EN 12620 in compliance with the specifications of DIN V 20000-103 must be used. Maximum cement content 360 kg/m³, but not for high-strength concrete.
* Earth-moist content with W/C ≤ 0.40 may be manufactured without air entrainment.
* e.g. vacuuming and power travelling of the concrete.
* Protective measures.

Limits for the composition and properties of concrete – concrete corrosion

*refer to section 3.1 on page 32
Concrete components

The aim of the mix calculation is to determine a composition of the required consistency and the required maximum particle size in accordance with the existing exposition classes. To do this, the substance volume calculation of a construction technology calculation program with corresponding results output is used.

The water-cement ratio as the most important quality parameter

The water-cement ratio is determined by the quantity ratio of total added water to cement content.

With increasing water-cement ratio,

- the strength of the concrete decreases
- the water permeability increases
- the concrete dries more quickly and shrinks more, which results in high shrinkage stress and the risk of crack formation
- the concrete may become more prone to "bleeding" and segregation
- the sealing properties, durability and service life of the concrete decrease

Content of fine matter

Fine matter is the share of solid matter which has a particle size smaller than 0.125 mm, i.e. the fine content is composed of cement, the share of 0/0.125 mm grain contained in the concrete aggregate, and any concrete additive added.

Fine matter improves the workability of the freshly-mixed concrete and leads to a dense texture of the hardened concrete. A sufficient share of fine matter is therefore important for pumped concrete, exposed concrete, concrete for thin-walled, tightly reinforced components and for water-impermeable concrete.

However, if the proportion of fine matter is too great, there is also a greater demand for water and hence the water/cement ratio also increases. The resistance to frost and wear decreases. The standard DIN EN 206-1/DIN 1045-2 therefore limits the content of fine matter for concrete:

<table>
<thead>
<tr>
<th>Cement content (kg/m³)</th>
<th>Maximum permitted fine matter content (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 300</td>
<td>400</td>
</tr>
<tr>
<td>≥ 350</td>
<td>450</td>
</tr>
</tbody>
</table>

Maximum permitted fine matter content for concrete with a maximum aggregate particle size of 16 mm to 63 mm up to and including the concrete property class C50/60 and LC50/55 in the exposition classes XF and XM.

Mortar content

Mortar is defined as the shares of cement, water, air voids, and 0/2 mm aggregate. Its content is given in dm³ per 1 m³ compressed fresh concrete.

The mortar content influences the pumpability and workability of the concrete. The following are standard values for pumpable concrete:

<table>
<thead>
<tr>
<th>Maximum particle size (mm)</th>
<th>Mortar content (dm³/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>≥ 450</td>
</tr>
<tr>
<td>16</td>
<td>≥ 500</td>
</tr>
</tbody>
</table>

Mix formula calculation

For the final calculation of the mix formula for 1 m³ compacted freshly-mixed concrete, note that the % shares of the individual grain groups from the grading curve not only have very different bulk densities but also a certain, usually individual water content. Due to this, the dry mass, the water contained in the aggregate and the total mass to be weighed when mixing, are to be calculated for every grain group. The amount of water actually added when mixing is a result of the reduced water content of the water contained in the aggregate of all the grain groups.
2. Properties of freshly-mixed concrete (general)

The most important properties of freshly-mixed concrete are:
- bulk density (incl. degree of compaction and pore content)
- workability (incl. consistency, deformation behaviour, homogeneity etc.)

2.1 Bulk density

The bulk density of freshly-mixed concrete refers to the mass in kg per m³ of fresh concrete compacted in accordance with specifications, including the remaining air voids.

Following careful compaction, for a normal concrete with a 32 mm maximum particle size, the remaining air content in the concrete is still 1 – 2 Vol.-%, i.e. 10 – 20 litres per m³. In fine-grained concrete, this value can be up to 60 litres per m³. Too great an air content, no matter what type, would however impair the strength of the concrete.

The freshly-mixed concrete placed in the component contains more or fewer voids depending upon the consistency and the aggregate mix. These voids that are first filled with air must be removed as far as possible by compaction. With the aid of an exterior vibrator on the formwork or a vibrating cylinder that is immersed into the freshly-mixed concrete, the freshly-mixed concrete is made to vibrate so that it seems to become fluid within the vibrator’s zone of action and the air from the air voids rises to the surface as a result of natural ascending force. In order to ensure that this path up to the surface does not become insurmountably long, or the duration for compaction and the associated risk of segregation is not increased unnecessarily, the concrete layer to be compacted by vibrating should not be higher than approx. 0.5 m.

However, the compaction of freshly-mixed concrete comprises more than this. The concrete components on the construction component surface formed by a formwork as well as on the surface of the reinforcement rods or mats located in the construction components have to be rearranged in such a way that even these surfaces are completely covered with cement paste. Unsatisfactory compaction is very often the cause for later damage to the structure or for complaints even at the stage of the acceptance test for the structure. The degree of compaction of recently placed and compacted concrete can, however, not be measured.

2.2 Workability

The consistency is a measure for the stiffness and thereby the workability of the concrete. With an otherwise constant concrete quality, it does not depend upon the w/c ratio but upon the amount of cement paste. The consistency is measured and tested by various standardised test methods.

The most common test procedures in Germany are the flow-table test and, for stiffer concretes, the compaction test in accordance with Walz.

<table>
<thead>
<tr>
<th>Spread classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>F5</td>
</tr>
<tr>
<td>F6</td>
</tr>
</tbody>
</table>

For spreads above 700 mm, the DAfStb "self compacting concrete" guideline must be followed.
The compaction test is suitable for determining the consistency of stiff, plastic and soft concrete, but not for free-flowing concrete. This method may be more suitable than the slump test for consistency classes F2 and F3 when using chip concrete, concrete with a high fine matter content or lightweight and high-density concrete.

The flow-table test is applied in Germany as shown in figure 10 under the same test conditions for determining the consistency for consistency ranges F2 to F6. In the US the consistency of the freshly-mixed concrete is usually quoted with the so-called slump test according to Chapman/Abrams (ASTM) according to Fig. 11. This test is also very widespread and well-known in many countries. In Germany, the test has become standardised in accordance with DIN EN 12350-2.

The consistency of the freshly-mixed concrete continuously changes from the time it leaves the mixer to the end of workability – approximately as shown in Fig. 12. This process, generally known as “stiffening” is completely normal and meets the requirements for the later strength development of the concrete and is not to be mistaken for the effect of plasticising admixtures, which is also limited to a certain time.

The temperature of the fresh concrete is important when concreting during extremely cold and extremely warm outside temperatures. This should be between +5 °C and +30 °C when placing. If the air temperature is below -3 °C, the concrete temperature when placing must be at least +10 °C.

Compaction classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Compaction</th>
<th>Description of consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>≥ 1.46</td>
<td>very stiff</td>
</tr>
<tr>
<td>C1</td>
<td>1.45 bis 1.26</td>
<td>stiff</td>
</tr>
<tr>
<td>C2</td>
<td>1.25 bis 1.11</td>
<td>plastic</td>
</tr>
<tr>
<td>C3</td>
<td>1.10 bis 1.04</td>
<td>soft</td>
</tr>
<tr>
<td>C4*</td>
<td>< 1.04</td>
<td>–</td>
</tr>
</tbody>
</table>

C4 applies only to lightweight concrete
Properties of freshly-mixed concrete (general)

Fig. 10: Measuring spread in accordance with DIN EN 12350-5

Fig. 11: Measuring slump in accordance with DIN EN 12350-5
Properties of freshly-mixed concrete (general)

Increased temperatures of freshly-mixed concrete (considerably above +20° C) generally accelerate the stiffening. High summer temperatures or artificially increased temperatures of freshly-mixed concrete (warm concrete for winter construction) considerably shorten the length of time between the mixing and the initial setting.

If a longer period of time has to be bridged between the fabrication and placing of concrete, then the stiffening of the concrete must be taken into account accordingly. This means, for example, that ready-mixed concrete must be made soft enough whilst being prepared in the works – and that both the travelling time and the temperature are taken into consideration – so that it has the desired consistency when it arrives on the construction site.

Caution!
Unauthorised addition of water on the construction site for renewed “softening” of the concrete drastically impairs the quality!

However, the different consistency parameters only reflect a part of the qualities of the freshly-mixed concrete with regard to workability. Important here are also the water-retaining capacity, the pump-ability and pump-willingness (refer to section 4.1), the deformation and alternating behaviour during compaction (refer to section 2.1) etc.

Time/consistency curve

Fig. 12: Time-dependency of consistency
3. Properties of hardened concrete

3.1. Exposition classes

Exposition classes are used to describe chemical and physical environmental conditions to which the concrete may be subjected. To guarantee an intended usage of at least 50 years and a durability for the intended use, the exposition classes are used to define requirements for the concrete composition (see section 1.6).

<table>
<thead>
<tr>
<th>Exposition Class</th>
<th>Corrosion and Exposure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0</td>
<td>No risk of corrosion or exposure</td>
</tr>
<tr>
<td>X1, X2</td>
<td>Reinforcement corrosion due to carbonation</td>
</tr>
<tr>
<td>X3</td>
<td>Reinforcement corrosion by carbonation, moderate damp</td>
</tr>
<tr>
<td>X4, Xf1 or X4, Xf1, Xa1</td>
<td>Reinforcement corrosion by carbonation, concrete exposure by frost without thawing agents, Weak environmental chemical exposure</td>
</tr>
<tr>
<td>X4, Xf1, Xa1</td>
<td>Concrete with high resistance to water penetration (water-impermeable concrete) in accordance with DIN 1045-2 and German "WU-Richtlinie" - water impermeable concrete guideline</td>
</tr>
</tbody>
</table>

Fig. 13: Exposition classes in the residential construction*

Fig. 14: Exposition classes in the industrial construction*

*Source: publication by Holcim (Baden-Württemberg) GmbH
Compressive strength

The compressive strength is the most important property of concrete. The standard check for determining compressive strength (DIN EN 12390, part 4) is usually performed after 28 days on sample cubes with 15 cm edges. The compressive strength is determined from the maximum load applied in the test press (before breakage) in Newtons, divided by the surface area of the test object that was subjected to the load in mm². Depending on the compressive strength, the concrete is assigned to one of the property classes described in chapter 1.6. A certain cube compressive strength may also be necessary at a specified time earlier than after 28 days, e.g. when stripping walls or floors. It can, however, also be arranged for a later date, e.g. when using slowly-hardening cement.

A lower compressive strength than anticipated can be caused by improper handling of the concrete when placing. This includes in particular:
- unauthorised addition of water on the construction site
- placing of fresh concrete after setting has begun
- insufficient compaction, especially as a result of fill lifts being too great and
- improper subsequent treatment, e.g. insufficient protection against premature drying out

Properties of hardened concrete

3.2 Compressive strength

<table>
<thead>
<tr>
<th>Exposition Class</th>
<th>Corrosion and Exposure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC, XF, XA or XM</td>
<td>Reinforcement corrosion by carbonation, concrete exposure by frost and weak chemical environment</td>
</tr>
<tr>
<td>XC, XF, XA, XD1 XM1</td>
<td>Concrete exposure to moderate to severe chemical environment</td>
</tr>
<tr>
<td>XC, XF, XA, XD1 XM1</td>
<td>Concrete exposure to moderate to severe chemical environment</td>
</tr>
<tr>
<td>XC, XF, XD1, XD2, XF2</td>
<td>Concrete exposure to frost with and without thawing agents</td>
</tr>
<tr>
<td>XF, XD1, XM1, XM2</td>
<td>Concrete exposure to frost with and without thawing agents, moderate environmental chemical exposure and exposure to wear</td>
</tr>
<tr>
<td>XF, XA1 or XA2</td>
<td>Concrete exposure to moderate to severe chemical environment</td>
</tr>
<tr>
<td>XA or XA2</td>
<td>Concrete exposure to moderate to severe chemical environment</td>
</tr>
<tr>
<td>XA or XA2</td>
<td>Concrete exposure to moderate to severe chemical environment</td>
</tr>
<tr>
<td>XA2, XA1 or XC2, XA2</td>
<td>Concrete exposure to moderate to severe chemical environment</td>
</tr>
</tbody>
</table>

Source: publication by Holcim (Baden-Württemberg) GmbH
3.3 Corrosion protection

A permanent protection against corrosion of the reinforcement can only be attained by the concrete surrounding it, but only when the hardened cement paste is sufficiently leakproof and the concrete cover thick enough. Unfortunately, when determining the maximum particle size mistakes are often already made in assessing the actual amount of space available for the concrete to "slip through" when placing between the reinforcement rods.

Likewise the "mixing work" necessary for complete covering of the reinforcement must not be underestimated whilst compacting. What makes it more complicated here is that the reinforcement is necessarily concentrated in the areas near the surface where the concrete also still has to be "arranged" so that the surface is enclosed by the concentration of the fine particles.

The necessary concrete cover which is a requirement for sufficient protection against corrosion, must be guaranteed by sufficient spacers. The forces that the falling or flowing fresh concrete exerts on the reinforcement are often very great and the subsequent displacement of a correctly installed reinforcement is covered by concrete. The damage does not come to light until quite a long time afterwards when the reinforcement rusts and the concrete chips.

The impermeability of the concrete to water does not just serve to guarantee the corrosion protection for the reinforcement but also prevents the penetration of water that stands under pressure, e.g. for dams or building foundations below the groundwater table. Testing of water impermeability is carried out according to DIN 12390-8 by testing the action of a water pressure of 0.5 N/mm² (5 bar) for 3 days. Then the average penetration depth of the water must not be more than 50 mm. Besides the intensive compaction, special attention must be given to avoiding construction joints between the individual concreting sections. It is imperative to ensure that concrete layers are placed "fresh on fresh". Concrete layers of not more than 30 to 50 cm guarantee that, for example, the vibrating cylinder with a normal penetration depth also reaches into the previous layer before this has begun to set.

3.4 Other properties of hardened concrete

Resistance to chemical corrosion is divided into three classes: Weak, medium, and severely corrosive environments.

When the attacking water is highly charged with sulphate (more than 0.6 g per litre) cement with a high resistance to sulphate (HS-cement) is to be used. However, concrete that is exposed to "very strong" chemical attacks over a long period of time must be protected consistently and in the long-term by a protective cover before the onset of the corrosive substances.

Frost-resistance requires concrete that is impermeable to water with sufficient strength and with aggregates that are resistant to frost. Resistance to frost and thawing salt is improved by the addition of air-entraining additives (LP).

A high **resistance to wear** is required by concrete with a surface that is exposed to a great mechanical load, e.g. lots of traffic, slipping bulk material, the movement of heavy objects or water with a strong current and water that carries solids.
4. Properties and conditions of freshly-mixed concrete when pumping

4.1 Pumpability and willingness to pump

Pumpable concrete is not a special type of concrete, although not every type of concrete fulfills the requirements for pumpability. The question regarding the pumpability of fresh concrete can be asked and answered in two steps:

1. Is the concrete at all pumpable under the given conditions?
2. If yes, how can the concrete be pumped, i.e. at what cost?

A freshly-mixed concrete is deemed pumpable when it is structurally leakproof and remains so throughout the whole pumping process. Structurally leakproof means that all firm components are completely enclosed by liquid (water) and can move against each other. The pressure transmission within the concrete must therefore only take place via the liquid. Therefore, in every cross-section along the route of transmission, the aggregate-cement mixture must at least be saturated with water. The flow resistance for the water within the aggregate-cement mixture must be greater than the wall friction resistance. When starting to pump, the water surplus must therefore be greater than the water displacement by the concrete.

![Fig. 19: Typical blockage](image1.jpg)

![Fig. 20: Pumping of high-density concrete in compressive strength class C100/115](image2.jpg)

The concrete composition in the finest grain range is thus very important. The cement and the other finest grain shares therefore do not just provide the “lubrication” on the pipe wall and thereby a reduction of the wall friction resistance but also provide an almost complete “packing” of the grain structure. In other words, the flow resistance for the water in the freshly-mixed concrete is about 95 % the result of the cement share.

The pumpability and structural density of fresh concrete are not, however, simply a question of composition, but also depend on the pipe diameter and the associated “boundary zone layer”.

Experience shows that the following are needed for pumpability:

- a suitable composition to provide a constant grading curve between the limit grading curves A and B
- a cement content of at least 240 kg/m³ for concrete with a maximum particle size of 32 mm
- a fine matter and powdered sand content (≤ 0.25 mm) of at least 400 kg/m³ for concrete with a maximum particle size of 32 mm
- a mortar content of at least 450 dm³/m³ for concrete with a maximum particle size of 32 mm
- a pipeline diameter of at least three times the maximum particle size diameter

The willingness to pump when pumpable does not simply imply the specific conveying resistance depending upon the consistency and flow velocity, but also the internal mobility of the fresh concrete when sucked into and passing through delivery line bends and other changes in cross-section. Whereas the first part of the willingness to pump can be expressed in the so-called "concrete pressure performance diagram" (refer to section 4.4.), it is not (yet) possible to express the inner mobility in figures.

The number of different ways to describe the consistency and the wide range when comparing measured values that cannot be precisely described physically, demonstrate the complexity of this matter. We will nevertheless try to provide an idea of this property in the following.
4.2 Origination and properties of the "boundary zone layer"

When concrete is conveyed through pipes and tubes, the necessity of applying a "lubricating film" made of cement paste directly on the pipe wall is emphasised at all times. A concentration of fine grain can be clearly seen on the outside of the "concrete sausage" when the concrete emerges out of the pipeline. The causes and effects of this "boundary zone layer" are as yet only little understood.

As has already been mentioned, pumpable fresh concrete is structurally leakproof in every part of the delivery line, i.e. the aggregate mix "swims" freely in the "concrete paste". The spaces between the grains are "saturated" with cement paste. The air voids that are also present and that have a liquefying effect are pressed together by the delivery pressure that is needed for pumping to just a fraction of their natural size and thereby lose their liquefying effect when pumping.

![Fig. 21: Space occupation of a pipe section (1 litre) with spherical grains of the example mixture: a) particle size 16/32 b) particle size 8/16 and 16/32](image)

As an example the air void content falls from 10% in a loose bulk concrete to a residual share of just 0.12% with a conveying pressure of 85 bar. The additive grains of the concrete occupy the space in accordance with their volume share. To illustrate this better, one can, for example, examine a line section with a diameter of 100 mm, 127 mm long with a volume of 1 litre and all aggregate grains of the grain 8/16 and 16/32 as spheres of different sizes. Fig. 21 shows a possible, random arrangement of these spheres in a pipe section of this type.

![Fig. 22: Boundary zone layer segregation for a delivery pipe diameter of 100 mm for the example concrete (composition dependent upon the relative distance from the central axis of the pipe)](image)
As is generally known, the largest, "bulkiest" grains have a diameter of up to a third of that of the pipe that encloses them. However, each grain can only approach the pipe wall until it makes contact with its surface. If you now "step back" in a layer parallel to the pipe wall, for example, at a distance of 1 mm, you also only come across the external layers of the larger particles, while all particles with a diameter smaller than 1 mm contribute to filling the space with their whole volume, and can compensate for the "lack" of coarse grain. In other words, to fill the pipe cross-section completely with the concrete components, the large grains must be pressed inwards and a suitable share of the smaller grain and water must be pressed outwards – at least in the boundary zone. This process is comparable to flattening the concrete surface with a trowel.

The "boundary zones segregation" is always carried out when a space is filled with concrete, therefore already when filling the delivery cylinders as well as for final placement, e.g. into a wall formwork. A requirement here, however, is the previously mentioned inner mobility of the freshly-mixed concrete.

In the boundary zone, the mixture becomes constantly finer until there is pure cement mortar immediately next to the internal pipe wall. This accordingly results in an accumulation of...
Properties and conditions of freshly-mixed concrete when pumping

Coarse grain in the core zone. A requirement, however, for the pumpability of the concrete, is that the structural impermeability of the core zone remains despite boundary zone segregation. This explains why concrete is only pumpable up to a certain minimum pipe diameter. Fig. 23 shows the alterations to the grading curve at different distances to the pipe wall.

This radius-dependent concrete composition in the pipe cross-section shows that the freshly-mixed concrete properties are also dependent upon cross-section and radius, and that they alter according to changes during pumping. On the way through the delivery line the freshly-mixed concrete is subject to different stresses and changes in shape which it opposes with a certain resistance. When being conveyed in the straight cylindrical pipe, an exclusive shear stress \(\tau_s \) increases linearly as a function of the radius, as shown in Fig. 26a.

The concrete opposes this stress with a shear resistance (concrete viscosity) \(\tau_W \) which is dependent upon the speed but is in no way – as is usually assumed in the literature on the subject – constant over the course of the cross-section. Rather, the viscosity of the concrete coincides with the “denticulation” of the cement paste with aggregate grain that greatly decreases towards the wall (refer to Fig. 22). The share of aggregate in the core zone is a multiple of the share of cement paste, whereas towards the edge the share of aggregate practically drops to zero. If one compares the average particle size of cement (approx. 0.01 mm) to the maximum particle size (e.g. 32 mm), the result is the course shown in Fig. 26b for the concrete tenacity: the tenacity on the wall is approximately equivalent to that of the cement paste as known from rheological readings; increasing towards the core zone by a factor of several thousand.

The existence of a so-called limit shear stress \(\tau_0 \) to below which the concrete is not sheared and is therefore conveyed as a firm plug is often advocated in theoretical statements. This has, however, neither been proven in practice nor in laboratory tests. The significantly greater "tenacity" of the core zone compared to the boundary zone (see fig. 26b) and the increase in shear stress with the increasing radius (see fig. 26a) result in a very rapidly increasing shear stress \(\gamma \) in accordance with figure 26c, and a "plug conveyance" that is, however, very similar to the rate profile for the concrete flow in the pipe in accordance with figure 26d. Laboratory experiments performed by RÖSSIG with normal concrete only showed a total shear deformation of 0.3 to 0.5 m within the core zone after a pumping distance of 10 m. This corresponds approximately to a 100 to 200x shear distortion of the whole boundary zone compared to the core zone. It thus follows that the pipe conveying of freshly-mixed concrete has no additional mixing effect. Only after leaving the delivery line does a certain remix ensue when placing and packing and in this case, as already mentioned, renewed zone segregation occurs, e.g. on the surfaces of the formwork as well as in the reinforcement.

4.3 The behaviour of freshly-mixed concrete in the concrete pump

The concrete technological task of the pump is to press the freshly-mixed concrete as a closed and continuous conveying current into the delivery line, and then through this to the point of placement and to carry this out as far as possible without any impairment to its given composition and properties. The behaviour of the freshly-mixed concrete in the concrete pump includes on the one hand its passive behaviour as a result of the active reaction of the concrete pump to it, and on the other hand its own reactive effect on the concrete pump and its behaviour. The freshly-mixed concrete and the concrete pump run through different “operating phases” here.
Properties and conditions of freshly-mixed concrete when pumping

One must distinguish between on the one hand the operating state of the pump (starting up pumping, normal conveying operation, emptying and cleaning the line, malfunctions) and, on the other hand, the operating state of the concrete (transfer and sojourn time in the hopper, suction, filling of the conveying space, passing through the valve system and the taping after this). The type of concrete pump used (piston pump or squeezed tube pump) and the type of valves used for a piston pump (e.g. trunk of S-pipe valve) have a considerable influence on the behaviour of the fresh concrete inside the concrete pump. We will not go into further details here about the characteristic features and characteristics of the two principle types of pump as well as the different valve systems of piston pumps (refer to Fig. 28). The aim of the present document, "Concrete Technology for Pumps", is simply to make the processes within the concrete pump comprehensible from a concrete technology point of view.

Concrete can only be pushed through the delivery line when this has previously been sucked out of an open vessel (hopper) by increasing the volume of the conveying space of the pump, and the concrete fills the conveying space as much as possible. By decreasing the volume of the conveying space, the concrete is pushed out into the delivery line whilst displacing the whole concrete column in the delivery line. When observed more closely, the suction is also pushing; the volume increase of the conveying space (i.e. movement of the delivery piston in the delivery cylinder away from the inlet aperture) causes a low pressure compared to the atmosphere, which pushes the concrete out of the hopper into the conveying space with max. 1 bar, but only when there is not a continuous "air bridge" between the conveying space and the atmosphere.

The low pressure level for suction and filling requires a low as possible resistance to flow and deformation of the concrete. The agitator of the hopper and its geometrical shape contribute considerably towards this. The agitator does not just serve to keep the concrete free-flowing during the breaks in conveying but also moves and pushes the concrete during suction in such a way that the concrete can flow "from this movement" and flow without congestion into the suction opening that is as large as possible. The filling rate of the conveying space is an essential criterion for the efficiency of a pump.

Fig. 29: Putzmeister stationary concrete pump BSA 1407 D

Fig. 28: Concrete pump models:
a) Piston pump with trunk valve b) Piston pump with S-pipe valve c) Squeezed tube pump
Properties and conditions of freshly-mixed concrete when pumping

An increase of the speed of the delivery pistons or the rotor does not lead to the improvement of an insufficient filling rate caused by poorly-flowing concrete, since the atmospheric pressure difference of 1 bar can not be increased. On the contrary, the filling rate and therefore the efficiency of the concrete pump actually tend to deteriorate. For optimum suction conditions the suction openings and the conveying area diameter are kept as constant and as large as possible. This also results in the essential differences between the piston and the squeezed tube pumps: piston pumps suck in the concrete through large cross-sections and reduce the cross-section when pressing out the material; which enables large conveying outputs. Squeezed tube pumps are limited with regard to their delivery pressure to approx. 30 bar, and they therefore suck in the concrete preferably with the same cross-section as that through which the material is conveyed through the line afterwards. Its delivery performance is primarily restricted by the suction performance.

For piston pumps the suction behaviour of the freshly-mixed concrete is determined not only by the size of the suction opening and the efficiency of the agitator hopper but also by the "hindrance" of the suction due to the valve system used.

The filling of the conveying space also comprises the "boundary zone segregation" described in section 4.2 for the complete space-filling and the emergence of the more free-flowing boundary zone layer connected to this. There is only little time available for this as when the delivery pistons reverse direction the conveying space must be tightly filled immediately and the concrete must be pumpable.

When the concrete is pressed out of the delivery cylinders of a piston pump into the delivery line, the concrete current experiences a reduction in cross-section to the diameter of the delivery line (100 mm or 125 mm) both whilst passing through the valve (trunk or S-pipe) and afterwards. For the concrete this does not just mean a considerable deformation but also a great increase in speed as well as a corresponding increase of the boundary zone layer per volume unit of the concrete. To reduce the associated conveying resistance, the cross-section reduction is carried out continuously as far as possible over a sufficiently long section. This reduction of the cross-section inside or immediately after the pump also provides a pumpability test for the concrete. If a "difficult" concrete passes this "obstacle" without any problems then it really is pumpable and the danger of a blockage over the course of the delivery line due to the result of a wrong concrete composition is very improbable.

Properties and conditions of freshly-mixed concrete when pumping

An essential condition to maintain the pumpability of the concrete inside the pump is the reliable imperviousness of the valve system during the pressing phase. A valve system that is not watertight means a loss of water or cement paste in the boundary zone and thus the danger of the concrete not being watertight any longer and its wall friction no longer being pressure-independent which inevitably leads to blockages. The same is similar for the squeezed tube pump. Here there is the danger that insufficient sealing of the squeeze gap leads to the water or cement paste flowing away and the concrete loosing its pumpability just in front of the squeezing roller.

Under high pressure (above 80 bar) an effect arises in the concrete at points of leakage which in job-site jargon is called "encrustation". Finest mortar settles along the gaps and a part of the mix water is pushed through this. Under the influence of pressure and time the encrustation increases in the shape of a ring from the outside to the inside. Narrowing of the cross-section by more than 50 % is not rare. The result of this is the tendency to form blockages. As this encrustation hardens during operation it is not possible to remove it by the usual methods when cleaning the concrete pump afterwards. If the concrete encrustation is not noticed by the operator, frequent blocking is caused the next time the pump is used after the preliminary slurry has been pumped.
Properties and conditions of freshly-mixed concrete when pumping

Fig. 31: Pipe wear in the delivery line bend

It is very important for piston concrete pumps that the delivery space is emptied as thoroughly as possible with every pump stroke, as a so-called dead volume remains in the delivery space, primarily on the delivery piston, at least up to the next time the pump is cleaned. It hardens or sets there and this can lead to the destruction of seals, the delivery piston, and the delivery cylinder inside wall. This danger does not exist for squeezed tube pumps as the concrete only passes through the delivery space (the pump hose) in one direction and is therefore always flushed through with fresh concrete. The special operating states of the concrete pump described above (starting up pumping, emptying, etc.) have a considerable smaller influence on the behaviour of the concrete inside the pump than on the behaviour inside the delivery line. This is why these problems do not arise until in the following section. Besides the reactions of the concrete behaviour to the concrete pump that have already been mentioned and in addition to the stress resulting from concrete conveying pressure, the wear effect of the concrete on all parts that come into contact with the concrete should be mentioned. The wear effect of the concrete inside the concrete pump as well as later in the delivery line is primarily dependent upon the consistency and speed, as is the delivery resistance, but it is not dependent on the pressure. The enormous abrasiveness of the concrete, especially everywhere where the concrete does not flow "cylindrically" but where the contact surface moves relatively towards the concrete, i.e. in the hopper, in the agi-

Fig. 32: Measuring pipe wear

tator, in the valve system, in the reductions and in the elbows (outside) is due to the fact that the coarse aggregates are embedded in "deeper" layers. They therefore have a greater relative speed with which they "occasionally" scratch the contact surface through the flexible boundary layer zone. Their irregular shape and the tight toothing of the grain mix also prevents a rolling off of the contact surface which would reduce wear, but rather lead to a twisting effect on neighbouring grains which are thereby additionally turned towards the contact surface.
4.4 The behaviour of freshly-mixed concrete in the delivery line

When flowing through a straight, cylindrical pipe vertically upwards this process calms down after a short time by making use of the available "toothed play" between the grains, provided that the pipe sections do not have any indentations and do not leak. The latter leads in extreme cases to the loss of pumpability and therefore to blockages or "merely" to the formation of a firm concrete crown, constricting the cross-section, with increased resistance to conveying. For great vertical conveying heights and when pumping through high quality delivery pipes, the wall contact of coarse aggregate is practically completely "calmed down" and there is therefore both lesser conveying resistance and considerably less wear. This process known as the "flotation effect" was first observed in 1976 during the high rise pumping world record at the time of 310 m at the Post Office Tower in Frankfurt am Main (Germany) with a Putzmeister Elephant pump.

With a horizontal delivery line the "flotation effect" can only occur in a reduced form as even a slight setting of the coarse aggregates leads to "occasional" wall contact and all the previously mentioned consequences, albeit mainly on the lower pipe inside wall.

Flowing through pipe elbows means an additional bending and shearing stress for the freshly-mixed concrete. As a pipe elbow in the "outside curve" has a greater surface than a straight pipe, the boundary zone with more fine grain becomes thinner; whereas in the "inner curve" it becomes thicker. The very thick core zone displaces the softer and weak outside boundary zone and is diverted by hitting the pipe wall due to shearing and bending, which causes intensive wear. This may well lead to some local zone no longer being leakproof and therefore to an even greater conveying resistance and wear. Moreover, the flow of concrete needs a consolidation and quietening phase after a pipe elbow.

The throughput of freshly-mixed concrete through a delivery line is a result of the performance of the concrete pump (engine performance [kW], eff. output [m³/h], eff. delivery pressure [bar]), geometry of the delivery line (diameter [mm], length of line [m], delivery height [m]) and consistency of the freshly-mixed concrete (tenacity factor). The mutual dependence of these diameters is illustrated with the concrete pressure performance nomogram in Fig. 33, which is independent of the concrete pump used.

Fig. 33: Concrete pressure performance nomogram
Properties and conditions of freshly-mixed concrete when pumping

Caution:
Please use this nomogram for dimensioning with normal pumping concrete. The use of concrete additives (deflocculants) can falsify the result in quadrant C.

The example shown here assumes an effective pump output of \(Q = 40 \text{ m}^3/\text{h} \). For the assumed conveyor pump diameter of \(D = 125 \text{ mm} \), we can see an average flow rate of approx. 1 m/s. The relationship of the delivery pressure to the delivery pipe diameter is even greater than the dependency on the flow rate: a reduction of the pipe diameter from 125 mm to 100 mm, for example, is the equivalent of increasing the speed of the concrete in the pipe to just 1.5 m/s, whereas the necessary delivery pressure is almost doubled. The consistency dependency represented is in keeping with experience gained over a number of years and meets the requirements for a rough estimate. If more exact values are necessary for a certain application case, then pump trials must be carried out with the planned concrete mix formula. For the example in Fig. 33 for a plastic concrete with a spread of \(a = 40 \text{ cm} \), the flow resistance is 0.21 bar per metre run. The assumed pipeline length of \(L = 300 \text{ m} \) results in a delivery pressure of \(p = 63 \text{ bar} \), which is further increased by the proportion resulting from the high-rise pumping of 0.25 bar per metre elevation, in this example, 20 bar for a delivery height of 80 m. If it is possible to use the "flotation effect" for the high-rise pumping, this value of 0.25 bar/m can be reduced by 60 % of the previously mentioned flow resistance (in the example: approx. 0.13 of 0.21 bar/m). The resistance to flow in the pipe elbows as well as the leaking pipe couplings with encrustation is usually converted to an equivalent pipe length:

<table>
<thead>
<tr>
<th>Elbow radius</th>
<th>Equiv. pipe length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large pipe elbow 90°</td>
<td>1000 mm</td>
</tr>
<tr>
<td>Pipe elbow 90°</td>
<td>281 mm</td>
</tr>
<tr>
<td>Leaking coupling</td>
<td>–</td>
</tr>
</tbody>
</table>

Starting to pump

The pump operator must direct his full attention to the behaviour of fresh concrete in the delivery line when starting to pump. The problem here is the necessary wetting of the inside wall of the pipe with cement paste until starting the stationary pump operation. The quantity required for this per running metre of the delivery line is exactly the same quantity that would remain in a 1 m section if the line was initially completely filled with fresh concrete and this was then allowed to empty. (10 m of a 125 delivery line have an internal surface to be wetted of approx. 4 m².) When starting to pump, this quantity of cement paste is "removed" only from the first concrete to flow through the delivery line. For this reason, when starting to pump, a start-up mixture enriched with cement surplus, or even a sand concrete/smooth mixture separately mixed in the hopper of up to 30 m – 1/4 m³ and from 30 m – 1/2 m³ should be conveyed before the first concrete (see the operating manual).

A more economical and effective solution to provide a start-up mix is to use a Putzmeister slurry for starting up pumping which is available as powder and only water needs to be added. The substance, which is ready after just a few minutes, is fed in via the cleaning opening. When starting to pump, this substance is pushed in front of the concrete and thereby covers the pipe inside wall.

The method commonly used in the field of covering the delivery pipes with water before pumping is only to be used if no other method is available, and can only be used for short delivery pipe lengths. If nothing is carried out, a blockage can be expected as soon as the machine starts to pump because after a relatively short conveying period an unpumpable, dry concrete plug is formed, which stops the flow of concrete at one of the first elbows.

An important requirement for a trouble-free flow of concrete is also the correct emptying and cleaning of the delivery line during a longer break in conveying so that no old, hardened concrete or cement paste residue remains in the line which would also lead to blockages when starting to pump again.
5. Short guide to avoiding and eliminating faults

5.1 For the delivery of concrete and charging of the concrete pump

<table>
<thead>
<tr>
<th>Established irregularity</th>
<th>Possible causes</th>
<th>Recommended measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel and rock noises in the truck mixer drum</td>
<td>Proportion of fine grain is too small</td>
<td>Check the delivery note</td>
</tr>
<tr>
<td>Increasing and subsiding noises of concrete in the truck mixer drum</td>
<td>Concrete consistency is too fluid</td>
<td>Check the delivery note or determine the spread</td>
</tr>
<tr>
<td>Concrete breaks up with sharp edges when exiting the truck mixer drum</td>
<td>Concrete consistency too stiff</td>
<td>Check the delivery note, when pumping, add a generous quantity of cement paste</td>
</tr>
<tr>
<td>Consistency changes during concrete transfer</td>
<td>Segregation</td>
<td>Stop transfer and mix the concrete thoroughly (several minutes)</td>
</tr>
<tr>
<td>Frequent blockage of the agitator shaft</td>
<td>Proportion of fine matter too small</td>
<td>Check the delivery note</td>
</tr>
</tbody>
</table>

5.2 When pumping

<table>
<thead>
<tr>
<th>Established irregularity</th>
<th>Possible causes</th>
<th>Recommended measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete pressure considerably above the expected value</td>
<td>Duration of action of deflocculant or setting retarder exceeded or shortened (summer heat, hot delivery line)</td>
<td>Cover of delivery line</td>
</tr>
<tr>
<td>Rapid increase in pressure above normal value</td>
<td>Blockage in or directly after the concrete pump</td>
<td>Fill with two truck mixers in parallel, mix in hopper start pumping slowly</td>
</tr>
<tr>
<td>Slow increase in pressure beyond normal value</td>
<td>Blockage towards the end of the delivery line</td>
<td>Reverse pump for a few strokes, pump again slowly, if nec. locate the blockage using a hammer handle test and dismantle the delivery line starting from the end</td>
</tr>
<tr>
<td>Poor fill level of delivery cylinder</td>
<td>– Consistency too stiff</td>
<td>Check the delivery note, if necessary determine the spread Hopper fill level until above agitator shaft</td>
</tr>
<tr>
<td>Blockage in the delivery cylinder of the pump</td>
<td>– Proportion of fine matter too small</td>
<td>see above</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Consistency too stiff</td>
<td>see above</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Old concrete residues or foreign bodies in the delivery line</td>
<td>Remove the obstacle</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Non-sealed pipe joints or weld cracking</td>
<td>Check pipe coupling, rectify cracks</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Unfavourable delivery line installation</td>
<td>Alternative installation</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Kinked final distributor hose or kinks in delivery hoses</td>
<td>Straighten out kinks</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Proportion of fine matter too small</td>
<td>see above</td>
</tr>
<tr>
<td>Blockage in the delivery line</td>
<td>– Consistency too stiff</td>
<td>see above</td>
</tr>
</tbody>
</table>
6. Specifications and recommendations of technical regulations

<table>
<thead>
<tr>
<th>Designation</th>
<th>Issued</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN EN 206-1/DIN 1045-2</td>
<td>07.06</td>
<td>DIN technical report 100 "Concrete"</td>
</tr>
<tr>
<td>DIN 1045-1</td>
<td>06.05 (2)</td>
<td>Concrete, reinforced and prestressed concrete structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 1: Design and construction</td>
</tr>
<tr>
<td>DIN 1045-3</td>
<td>01.05 (A1)</td>
<td>Concrete, reinforced and prestressed concrete structures –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Part 3: Execution of structures</td>
</tr>
<tr>
<td>DIN EN 12350-2</td>
<td>03.00</td>
<td>Testing fresh concrete - Part 2: Slump test</td>
</tr>
<tr>
<td>DIN EN 12350-4</td>
<td>06.00</td>
<td>Testing fresh concrete - Part 4: Degree of compactability</td>
</tr>
<tr>
<td>DIN EN 12350-5</td>
<td>06.00</td>
<td>Testing fresh concrete - Part 5: Flow table test</td>
</tr>
<tr>
<td>DIN EN 197-1</td>
<td>08.04 (A1)</td>
<td>Composition, specifications and conformity criteria of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>normal cement</td>
</tr>
<tr>
<td>DIN EN 197-4</td>
<td>08.04</td>
<td>Composition, specifications and conformity criteria of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blast furnace cement</td>
</tr>
<tr>
<td>DIN EN 1164-10-12</td>
<td>11.03</td>
<td>Special cement</td>
</tr>
<tr>
<td></td>
<td>08.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06.05</td>
<td></td>
</tr>
<tr>
<td>DIN EN 450</td>
<td>05.05</td>
<td>Fly ash for concrete – Definition, specification and quality control</td>
</tr>
<tr>
<td>DIN EN 12620</td>
<td>04.03</td>
<td>Aggregates for concrete</td>
</tr>
<tr>
<td>DIN EN 1008</td>
<td>10.02</td>
<td>Mixing water for concrete – Specification sampling,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>testing, and assessing the suitability of water</td>
</tr>
<tr>
<td>DAISBt Guideline</td>
<td>11.03</td>
<td>Water impermeable concrete structures</td>
</tr>
<tr>
<td>(German committee for</td>
<td></td>
<td>("WU-Richtlinie")</td>
</tr>
<tr>
<td>reinforced concrete)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAISBt Guideline</td>
<td>08.95</td>
<td>For concrete with prolonged pot life</td>
</tr>
<tr>
<td>(German committee for</td>
<td></td>
<td>("Verzögerter Beton")</td>
</tr>
<tr>
<td>reinforced concrete)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Further literature

1. "Betontechnische Daten" (Technical data for concrete), edition 09.05, Heidelberg Cement

2. Bauteilkatalog, Planungshilfe für dauerhafte Betonbauteile nach der neuen Normengeneration, Schriftenreihe der Zement- und Betonindustrie (Component catalogue, planning aid for permanent concrete components in accordance with the new generation of standards (German cement and concrete industry publications))

3. Participant documentation, "On-site seminar", Putzmeister Academy

4. Rössig, M.: "Förder von Frischbeton, insbesondere von Leichtbeton, durch Rohrleitungen" (Conveying freshly-mixed concrete, especially lightweight concrete, through pipelines), research reports from Nordrhein-Westfalen, No. 245. Westdeutscher Verlag 1974

5. Weber: "Guter Beton, Ratschläge für die richtige Betonherstellung" (Good concrete, guidelines for proper concrete production), 2006

6. Pickhardt, Bose, Schäfer: "Beton – Herstellung nach Norm, Arbeitshilfe für Ausbildung, Planung und Baupraxis" (Concrete - Manufacturing to standards, aid for training, planning, and construction work), 2006

7. Eifert, Bethge: "Beton – Prüfung nach Norm, die neue Normengeneration" (Concrete - testing to standards, the new generation of standards), 2005

8. Prof. Dr. Ing. S. Harald Müller: "Bauwerkserrichtung mit selbstverdichtendem pumpbarem Leichtbeton", (Construction with self-compacting pumpable lightweight concrete), Institut für Massivbau und Baustofftechnologie Karlsruhe, ISBN: 3-8167-7006-1